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ON LEAST SQUARES FITTING NONLINEAR SUBMODELS
Gordon G. Bechtel

Oregon Research Institute

Abstract

Three simplifying conditions are given for obtaining least squares
(LS) estimates for a nonlinear submodel! of a linear model. If these are
satisfied, and if the subset of nonlinear parameters may be LS fit to the
corresponding LS estimates of the linear model, then one attains the
desired LS estimates for the entire submodel. Two illustrative analyses
employing this method are given, each involving an Eckart-Young (LS) decom-
positicn of a matrix of linear LS estimates. In each case the factors provide
an LS fit of the nontinear submodel to the original data. The minimum error
sum of squares for this fit is the error sum of squares for the corresponding
linear model plus a function of the eigenvalues involved in the factoriza~
tion. An Eckart-Young factorization, however, is only a special case of an
LS decomposition of LS estimates. The present method is more generally
applicable {under the three simplifying conditions) whenever any LS procedure
may be found for fitting certain parameters of a nonlinear submodel to the

corresponding LS estimates of a linear model.
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ON LEAST SQUARES FITTING NONLINEAR SUBMODELS
Gordon G. Bechtel

Or.gon Research Institute

Least squares estimation procedures are readily available for linear
models which, depending upon their structufe, generate ''regression analyses"
or 'wariance analyses' for particular data layouts. Since the parameters
of nonlinear models are more difficult to estimate in an analytic way,
their estimates are usually obtained by approximate iterative techniques.
However, these techniques suffer from problems of local minima and may
be rather unwieldy. Therefore, it is the purpose of this paper to
present conditions which, If met by a particular nonlinear model, simplify
the analytic problem of finding exact least squares estimates for its
parameters.

OQur approach is similar to that of the analysis of variance, where
constraints (hypotheses) generate a ligggL_submodel of a linear model.
However, we shall use the general linear model as a device for embracing
a nonlinear submodel of interest. This device makes it possible, under
certain conditions, to obtain exant LS estimates for all of the submodel
parameters by (1) LS fitting only the nonlinear parameters to the corresponding
LS estimates of the linear model, and (2) preserving the remaining LS
estimates of the linear model. In this way some difficult nonlinear
least squares problems may ke reduced to manageable form. Moreover,
when the major interest is in the linear model itself, this technigue consti-
tutes an adjunct analysis, i.e., a further data breakdown, for the analysis
of variance associated with that linear model.

The theoretical part of the paper sresents the general linear model,

and its nonlinear submodel, in partitioned form. This partitioning identifies




O
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Aruitoxt provided by Eic:

the subset of LS estimates to be submitted to further LS decomposition.
It also permits the error sum of squares for the nonlinear submodel to
be written as the (fixed and known) minimum error sum of squares for
the linear model plus the sum of two other partitioned terms. These
two terms represent additional error incurred under the nonlinear hypothe-
sis, and this excess error sum of squares is analogous to the {linear)
hypothesis sum of sgquares in the analysis of variance.

Subsequently, three conditions are invoked to reduce the sum of these
two partitioned terms to a multipie of another error sum of squares,
i.e., that for fitting the nonlinear parameters to the corresponding LS
estimates of the linear model. The analytic minimization of this latter
error sum of squares, if available, minimizes the entire error sum of
squares for fittinga the nonlinear submodel to the data. f@o specific
nonlinear pﬁob]ems. each satisfying these three conditions, and each
amenable to an absolute minimization of tke second error sum of squares,

illustrate the usefulness of the method.

Conceptual Approach

The Linear Mcde!

Since the conceptual approach rests upon partitioned vectors and

matrices, we write the general linear model as

(1) y = (X0Z) (—E) +e,
Y
where (XEZ) is the design matrix and (Ea is the parametric vector. The
modei is fit to the vector y of observations with a resulting error vector
e. A vector (—?-) of least squates estimates is one which minimizes the
Y

error sum of squares e’e at e“e, where




The Nonlinear Submodel

The nonlinear model of interest may be generated by placing a
hypothesis
(2) H:y = gla)
upon the linear model. The function g is a nonlinear constraint upon
vy in the argument o, which is some specified set of parameters. We
‘thén write the nonlinear submodel, i.e., the conjunction of (1) and (2),

as

(3) y = (xiz>6@+ £

where f is a vector of errors. Our purpose in generating (3) as a submodel
of (1) is not to test hypothesis (2), as is usually the case, but
rather to use (2) as a device for LS eztimation. This will be accomplished

through the manipulation of the error sum of squares f°f for (3).

The Error Sum of Squares for the Norlinear Submode]

We may write the error vector for the submodel as
y - (Xj2) C‘ﬂ%?
Loy (-8 Loy (-8 ' 8
y - (X‘Z)(—:) + (X1Z) G:) - (X:Z)Q ‘>
] 9 ' 7 za)'
&+ (Xiz) Eﬁé{—s) ,

wheree = y- gla). The least squares problem for (3) is that of choosing

-4
]

B,a so as to minimize the error sum of squares

(L}) 3(8,5) = f-f
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Equation (4) shows that.” is the sum of a known, fixed value &°é, which
is the error sum of squares for the corresponding linear modet, and

two other terms, which depend upon the submodel parameters B,a .

LS Fitting o to vy

The following three paragraphs give conditions for obtaining an
LS fit of B,a to y by means of an LS fit of a to y:

Submodel invariance of 3. The elements of B enter (3) linearly,

while those of o enter this submodel noniinearly. |In certain applications
it may be possible to find the LS estimate £ under the submodel, i.e.,

the value of B which minimizes Qj’, without simultaneously solving for

the least squares estimate o. Moreover, if

(5) B=8,

which is the LS estimate under the corresponding linear model, then

this value may be inserted into (4) reducing F(B,e) to

(6) S (e) = e’e + 28°Ze + £72 Z¢
P’ is the sum of the error sum of squares for the corresponding linear
model, a bilinear form in Z, and a quadratic form in Z°Z. Since these
forms depend only upon €, and hence only upon a, the LS solution for
the rnonlinear submodel is completed by choosing ¢ to minimize the sum
of these bilinear and quadratic forms. Of course, this itself may pre-

sent a formidabie problem, and, therefore, we invoke two more conditions

toe reduce the latter sum to a multipie of e”e

Vanishing bilinear form e”Ze. |f in a particuler analysis the

structure of e, Z, and € is such that
(7) e’Ze = 0,

then we have




A A

(8) P (e) = e’e + €°27Ze

which depends only upon a through the quadratic form in Z°Z.

Reducible quadratic form €“Z”Ze . The structure of Z and & may

also permit the reduction

(9) €°l°Ze = ce’e

H

of the quadratic form, where ¢ is a known constant characteristic of the

particular analysis. In this case, we can write

(10) WP (e) = e’e + cc’e

[w]

which depends only upon a through the sum of squares e£”e.
When conditions (5), (7), and (9) hold, the LS estimate a may be found

by minimizing €“e , which is the error sum of squares for the model
(11) Y = gla) + €.

The LS problem for model (11) is, of course, simpier than that for model
(3), which requires a direct minimization of O in (4). The usefulness
of (11) is illustrated in two nonlinear analyses in which {5), (7), and

(9) are satisfied.

Two ITlustrative Analyses Involving Eckart-Young Decompositions

Gollob's Factor Analysis of Variance (FANOVA)

The linear model. The linear mode! for the standard two-way analysis

of variance may be written in scalar form as
(12) yijk =y + ej + oy o+ I + eijk

The Gj and n, are main effects, the pjk are interactions, and




(13a) 20, = Jn =0
itk
13b =To. =0 =1, ...,0; k=1, ... ,K) .
(13b) Zka gpjk (j )
J
in the J x K layout (J > K) with m observations per cell (i=1,...,m) the

LS estimates are

(14)

where a dot indicates an average over the subscript it replaces. A

typical element of the error vector e is

ik = Yijk T Yk
and the errcor sum of squares is
(15) 36 = TG -y )7
ijk ik ik

The nonlinear submodel. Gollob's {1968) FANOVA model

r
(16) =u+9j+nk+z}\.'f

Y. g + f, .
ijk p=1 jp pk ijk
is a submodel of (12) which is formed by placing the interaction terms under

the constraint

]
Hio,, = A, - (=1, ...,05 k=1,... K
® ik pz, jp'pk g )

The hypothesis H sets each pjk equal to an inner product over r{<K) dimen-

sions. In (16) the ej and n, satisfy (13a), and the kjp and ok satisfy

( ?a E . = E[ =0 p= eyl

\] ) 'A P Kk ( 1: ’ ),

(1”)) E[ =1 ' ' (p"—-] I")
l‘ pk rrto ?




YA, A, = = 0 {
(17¢) vdpia gTPkqu P#q)
Equation (17a) replaces (13b), while (17b) and the orthogonality condi-

tions (17c) are required for the uniqueness of the Ajp and Tpk under the

factorization H.

Identifications. In examining the FANOVA model we make the following

identifications with the preceding notation:

B = {u,ej,nk} ,
v = {pjk} ,
g€ = {sjk} ,

where

e S Pon T DpTok
P
in the two-way layout with m observations per cel) Z may be partitioned
vertically, and the submatrix Zi for the ith replicate is given in Table 1.
The rows and columns are labeled by the observations yijk and the inter-
actions pjk' Since this submatrix, which is the JK x JK identity matrix,

is repeated for each replicate i=1,...,m , the matrix Z may be written as
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submodel invariance of {ﬂ’éi}ﬁk}' The error sum of squares for (16) is

&= T i

ik !

and, introducing Lagrange multipliers ¢ and ¢ for (13a), we generate
;72 = y+ ¢Zej + wan
j k

Setting to zero the derivatives of ”E with respect to u, ej, and N s

using (13a) and (17a), and eliminating ¢ and ¥, we find that

U=y,

18 6. =8, ,

(18) j i
nk=nk’

which are given by (1h).

The vanishing bilinear form. The bilinear form in this analysis is

e’Ze = ) ) e, . z,., €,
i3,k 1om ijk7ijk, Im Im

where the element of Z is

1 when 1,m= j,k
Zijk,]m = )0 otherwise

Thus we have

(19)

o
N
N

m

il

%EEeiJkejk

il

EEEJk%eijk

=O’

1)




since

A

%ele = %(yljk - y'_jk) =0

The reduction of the quadratic form. The matrix Z°Z s

2z = ) 172

[}
3
H

Therefore, the quadratic form may be written as

(20) e°1°Ze

€ mIJKE

2
N
jk

and the error sum of squares for (16) is

.o . 2 m 2
(21) Jp - Eg:g(yuk /'jk) + %ZEJk .

The Eckart-Young decomposition of the Bjk' Due to (21) we may obtain
LS estimates of the Ajp and Tpk by LS fitting these parameters to the 5jk

through the model

-~

o = )AL + e, ,
°ik g jp Pk jk

which, in matrix notation, is

(22) P=AT+E,
wnei'e . R
P = (pjk) is the J x K matrix of estimated interactions,

A= (X.) isaJ xr matrix ,
Jp

p—b
-



—
n

(v ,) is an r * K matrix,
pk

E = (Ejk) is a J x Kmatrix of residual errors.

The LS subproblem for (22) is easily solved by an Eckart-Young decompo-
sition of P. This provides estimates A and T which minimize

2

a’€=225. ,
e jk

and hence the second term ofd®” in (21). The LS estimate of T in (22) is

civen by .
B
(23) T = (Tpk) - )
T
-
where the rows ;1""’%r are r orthonormal (unit length) eigenvectors

corresponding to the r(< K - 1) largest eigenvalues of the K x K, rank

~

K- 1 matrix P’ﬁ (e.g., see Eckart & Young, 1936; Householder & Young,
1938; Keller, 1962; Whittle, 1952). With T thus constructed, the L5

estimate of A is obtained as

(24) A= (xjp) = PT”

A is column-wise orthogonal, i.e.,

(25a) T =1,

=1
\
=1
1}
—

(25b)
where the r diagonal elements

L.> . . .>L2 >0

1= - r
of the diagonal matrix L are the r largest eigenvalues of PP. Equations

(25a) and (25b) restate (17b) and (17¢c) in matrix notation.

19
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The Eckart-Young decomposition for {22} completes the solution

since it provides the X and T which, along with 7. 6i’ and n,, are

p pk J K’
exact LS estimates for fitting (16) to the original data yijk' The

associated minimum error sum of squares for (16) may be found by noting that

]

2 ~2
(26) min m))e? myje’
Sk Ak Rk
K-i
m )y £,
p=r+1 P

where the latter summation is taken over the (K-1)-r positive eigenvalues
not used in the construction of T (Ke]ier,'1962). Since we have chosen the
rows of T as r orthonormal eigenvectors corresponding to the r largest
eigenvalues of P°P, this summation is over the (K-1)-r smallest positive

elgenvalues. Due to (26) the minimum of (21) is

(27) mintyo’

]

e’e + ¢ min £7¢

K~1
2
ZZZ(Y.. -y ) +m L,
ik K Ik p=§+1 P

which is the error sum of squares in LS fitting the FANOVA submodel to the
replicated two-way layout. Expression (27) consists of the usual error
sum of squares for this layout incremented by a second term representing
the (K-1)-r deleted factors in the Eckart-Young decomposition of the

rank (K-1) matrix of estimated interactions. Of course, if all K ~ 1
factors are extracted, then the second term vanishes, and the e!:ror sum

of squares takes a minimum value equal to that for the two-way analysis of
variance.

The Multidimensional Choice Scaling of Bechtel, Tucker, & Chang

The linear model. !n a three-way layout of graded paired comparisons

a typical observation yijk indicates the strength of choice for object }

Q over object k in replicate i, e.g., individual i (Bechtel, Tucker & Chang,

13
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in press). When n objects are being studied, each replicate contains (;)

. n . . . . .
comparisons, and hence there are m(2) observations in a design involving

m (2 n) replicates. The linear model for this pairwise choice layout is

(28) Vigk = %5 T %k TPyt Bk
where the eij and eik are intrareplicate scale values, the pjk are inter-
replicate interactions (pjk = -pkj), and
(29a) Jo.. =0 (i=1,...,m)
L]
J
(29b) Zp.k=o (j=1,...,n)
k#j -

The LS estimates of the parameters of (28) are

>
{—

o= ) Y.
ij n 4. 1jk
(30) 7]

jk = Yojk ._j .k b

~ o A A Ry
(31) ee =)} Ty ~8,,+86, - )
ij<k ijk i] ik jk
The nonlinear submodel. The observational equation
r r
(32 Yk T L Meter T L etk T ok Figc

given by Bechtel, Tucker, and Chang (in press), is generated by placing the

constraint
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upon the scale values in (28). In (32) the P ik satisfy (29b), and the xip

and T ., satisfy
PJ

(333) %“ij =0 (D=1’ ,I") 3
(33b) -%‘Tsj = (P'—'], ,I") »
(33c) ETPJTqJ = %Aipxiq =0 (p#q)

Equation (33a) replaces (29a), while (33b) and the orthogonality conditions
(33c) are required for the unidqueness of the Aip and i under the factori-
zation H,

Identifications. The following definitions link the components of the

choice model to the preceding general notation:

B = {pjk} ,
Yy = {eiJ.} ,
" e = {EU’} ,
where
SIEMTI IS

In this replicated paired comparisons design the matrix Z, which is

m(;) x mn, may be partitioned into m? submatrices, each being (;) X n.

»

The submatrix Zii” for replicates i and i, is the zero matrix for

i #i”. For i = i”'it is the pairs x singles scale matrix in Table 2,
where the rows and columns are labeled by the observations yijk and the
scale values 8y - Since this submatrix is invariant over replicates

-

i=1,...,m, the matrix Z may be written s




Z]] 0 0 S . 0 0
Z= 0 Zii . 0 = 0 S 0
0 0 z \0 0 S

m

Submodel invariance of {p., }. The error sum of squares for (32) is

C7o = ZZ Zf?jk s

Pj<k !
and, introducing Lagrange multipliers ¢j for (29b), we have
7 =+ 1o e
Setting to zero the derivative of 77 with respect to P ik’ using (29b) and

(33a), and eliminating the ¢j’ we find that

-~ -~

(34) Pl = Pk

which is given by (30).

The vanishing bilinear form. The bilinear form in the error sum

of sguares for this analysis is

e’Ze = | Joe.. 2., €1
L0k 1om ijkTijk,Im 1m

where the element of Z is

1 when 1,m = i,j
~1 when 1,m = i

z.. =
tik, Im 0 otherwise
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Thus we have

2°Ze = )) )e.. €. - ) ‘é.. €,
7§<k ijk7i] §j<z ijkTik

I Zéijk(eij U

ij<k
and, since eijk = —eikj’ we may write
- 1 -
(35) e°ze=3y) 1 e.. (e.. - e )
zij KEj Pjk i ik

1 - 1 -
S lye Ve - 1yTe Ve
2ij iJk#j ijk 2ik ij#k 1k

=0 .

Equation (35) follows from the fact that

~ ~

®ik T k;jeijk

Y {y,. -8.. + 8., -p. ) =0
ey ijk i] ik jk

j#k
due to (29a), (29b), (30), and the skew-symmetry of {éijk}'

The reduction of the quadratic form. The matrix Z°Z for (28) is

$°S . 0 0
z’z = f.) S’S 0
0 L0 . . .8°S




where
n-1 -1 -1
g S = -.-1 n-1 -1 -
-1 -1 .n-1

Therefore, the guadratic form

e’27Ze =

|
/m\
-
™
- N
G-
I
- o» -
wy
A Y
wy

m
} elS7Se,
i=1 ! ‘

]

where ef is the it row of the matrix (Eij)
n x n matrix with each entry equal 1, we may reduce the ith

.. Letting (1) denote an

quadratic

form under the latter summation to

EES’SEi s;[nI - (1)]si

enle, - es(Ve,
i i i i

which follows from the

LI N

(8., - P ) =0 (i=1,...,m)
p

16




17
due to (29a) and (33a). Using this reduction we then write the entire

quadratic form as

(36) AL

niz1€;ei

]

nilel.

i; '
and hence the error sum of squares for (32) as
1]

’ A A o\ 2 2
(37) N A A n;?ﬁu

The Eckart-Young decomposition of the é’j' Equation (37) enables

us to obtain LS estimates of the Aip and ij by LS fitting these parameters

to the éij through the model

5, = Zl. T . +e.,. ,
] b p pJ t]

which, in matrix notation, is

(38) O = AT + E ,
where
5 = (eij) is the m x n matrix of estimated scale values,
A= (kip) is anmxr matrix,
T = (ij) is an r x n matrix,
E = (Eij) is an mx n matrix of residual errors.

An Eckart-Young decomposition of @ in (38) provides estimates A and T

which minimize
. 2
e'e = ZZeij s
ij

and hence the second term of Dp’ in (37). The construction of A and f,

19




which has been described in detail by Bechtel, Tucker and Chang (in press),

is similar to the construction of the estimated factors in the FANOVA model.
The Ectart-Young decomposition for (38) completes the analysis

by providing the iip and ;pj which, along with the Sjk’ are LS estimates

for fitting (32) to the original paired comparisons yijk' The error sum

of squares for this fit is the minimum of 7 in (37) and is attained

at the minimum

-9 n-1
(39) nZZei. =n ) L,
(] J p=r+1 P

of the second term of (”. Since rank O = rank 8°0 = n-1 due to (29a) ,
the summation on the right is over the (n - 1)-r smallest positive eigen-

values of 0°0. Substituting (39) into (37) gives

e’e + c min €’¢

(40) min 0P~

=1
~ ~ ~ 2 n
(y... =6,.+86 -0 )Y54n ) £ |
§§<g Yle ' Tk Jk np=r+1 P

which is the error sum of squares for LS fitting the choice submodel

to the three-way layout of paired comparisons. In (40) the error sum of
squares for the corresponding linear model is incremented by a second

term whenever the number r of factors in the Eckart-Young decomposition

is Jess than the rank (n-1) of the matrix of estimated scale values. When
r = n~-1 the second term vanishes, and the error sum of squares is minimized

at the first term.
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Footnote

The developments in this paper were initiated and carried out in
part while the author was a Visiting Rescaich Fellow at Educational

Testing Service. They were extended and concluded at thc Oregon Research

Institute under Grant Nos. MH 12972 and MH 15506 frum the National

Institute of Mental Health, U. S. Public Health Service.
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TABLE 1

The ith submatrix Zi = IJK

Pris Py s Pk
Yiti) ! 0 0
yijk 0 1 0
Yigk| © 0 ]

)
g



TABLE 2

The Pairs x Singles Scale Matrix Zii =S
0.1 0., . - .—_;e_i; T MV P
Yit12 ! -1 0 0 0
yijk 0 0 1 -1 0
yi,n-],n 0 0 0 0 1




